Shelling the Voronoi interface of protein-protein complexes predicts residue activity and conservation
نویسندگان
چکیده
The accurate description of protein-protein interfaces remains a challenging task. Traditional criteria, based on atomic contacts or changes in solvent accessibility, tend to over or underpredict the interface itself and cannot discriminate active from less relevant parts. A recent molecular dynamics simulation study by Mihalek and co-authors concluded that active residues tend to be ‘dry’, that is, insulated from water fluctuations. We show that patterns of ‘dry’ residues can, to a large extent, be predicted by a fast, parameter-free and purely geometric analysis of protein interfaces. We introduce the shelling order of Voronoi facets as a straightforward quantitative measure of an atom’s depth inside an interface. We analyze the correlation between Voronoi shelling order, dryness, and conservation on a set of 54 protein-protein complexes. Residues with high shelling order tend to be dry; evolutionary conservation also correlates with dryness and shelling order but, perhaps not surprisingly, is a much less accurate predictor of either property. Voronoi shelling order thus seems a meaningful and efficient descriptor of protein interfaces. Moreover, the strong correlation with dryness suggests that water dynamics within protein interfaces may, in first approximation, be described by simple diffusion models.
منابع مشابه
Shelling the Voronoi interface of protein-protein complexes reveals patterns of residue conservation, dynamics, and composition.
The accurate description and analysis of protein-protein interfaces remains a challenging task. Traditional definitions, based on atomic contacts or changes in solvent accessibility, tend to over- or underpredict the interface itself and cannot discriminate active from less relevant parts. We here extend a fast, parameter-free and purely geometric definition of protein interfaces and introduce ...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملImproving protein-protein interaction prediction using evolutionary information from low-quality MSAs
Evolutionary information stored in multiple sequence alignments (MSAs) has been used to identify the interaction interface of protein complexes, by measuring either co-conservation or co-mutation of amino acid residues across the interface. Recently, maximum entropy related correlated mutation measures (CMMs) such as direct information, decoupling direct from indirect interactions, have been de...
متن کاملResidue Conservation Information for Generating near-native Structures in Protein-protein Docking
MOTIVATION Protein-protein docking algorithms typically generate large numbers of possible complex structures with only a few of them resembling the native structure. Recently (Duan et al., Protein Sci, 14:316-218, 2005), it was observed that the surface density of conserved residue positions is high at the interface regions of interacting protein surfaces, except for antibody-antigen complexes...
متن کامل